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ABSTRACT

This paper describes several innovative dynamic panel data models that allow variations in slope coefficients both across time and cross-sectional units. We replace
time variation with a dynamic (autoregressive) component and introduce several variations of the so-called Mundlak device in which random intercepts are linear
function of the average values of the regressors. We develop all models in a Bayesian framework, and test their performance using an interesting application on the
impact of advertising on firm sales. We provide technical details of all these models and present tools to compare their performance in a Bayesian framework.
Moreover, model averaging and posterior model pools are presented to gain more insight into the relationship between advertising and sales.

1. Introduction

The use of panel data in tourism research is quite prevalent as panel
data allow more precise estimation of regression parameters (Falk,
2010; Garin-Mun, 2006; Sequeira and Macas; Nunes, 2008; Rey, Myro,
& Galera, 2011). However, most applications, in general, have been
static in that they do not allow the dependent variable to depend on its
past realization. Dynamic panel models (DPM), on the other hand,
despite their popularity in other related fields have not been used much
in tourism research. They can bring many advantages to several tourism
contexts. For example: demand modeling; where “if the impact of past
tourism is neglected, the effect of the relevant variable considered will
tend to be overestimated (as the estimated coefficients will involve
direct and indirect effects)” (Garin-Mun, 2006, p.286). Even in contexts
where the lagged dependent variable is not of high interest, the in-
troduction of these lags is essential to control for the dynamic nature of
the industry. Adopting the appropriate behavioral specification allow
us to control for new or different paths between the dependent and
independent variables (Bond, 2002). In addition, dynamic models are
highly effective to deal with endogeneity-related issues (i.e. simulta-
neity, omitted variable bias, country-specific effects and measurement
error).

Our aim in this paper is to take the estimation of DPM to a different
level, describing seven different advanced formulations that can be
used in future tourism applications on panel data. We focus specifically
on the issue of heterogeneity, where most existing panel data models
(including DPM) assume that slope coefficients are common across
units and heterogeneity is modeled using fixed or random effects for the
intercept. However, heterogeneity is not exhausted by modeling the
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intercepts as unit-specific and using fixed or random effect estimators.
Heterogeneity may also be reflected in differences in the slope coeffi-
cients. We also argue that heterogeneity in slope coefficients is not
necessarily exhausted by assuming that they are random and follow, for
example, a multivariate normal distribution. Instead the slope coeffi-
cients may also vary over time, in which case we need models that
allow for variation over both time and cross-sectional units. In this
respect, dynamic slope coefficient models may be necessary. This is
particularly true when the objective is to use panel data models for
forecasting purposes, as is common in applied tourism research. For
instance, when one is using dynamic panel data models for forecasting,
adjustment costs are thought to be important. Such models can be
improved, in terms of forecasting, when coefficients are dynamically
varying and/or when they are different for each cross-section (using a
random-coefficients framework). However, we are not aware of re-
search that accounts for these concerns.

In addition, different specifications for the variation of coefficients
across units or over time are rarely tested against alternatives. For ex-
ample, coefficients can include two components -one that varies over
time and one that varies across individuals. An alternative specification
is to replace time variation with a dynamic (autoregressive) component.
We also discuss the issue of independence between the random inter-
cepts and the regressors, where in simple panel data models, this is the
typical assumption. This assumption cannot however always be correct
and the fixed effects specification is considered better in this regard. An
intermediate assumption, which we present, is to use the so-called
Mundlak device in which random intercepts are a linear function of the
average values of the regressors. Clearly, this can be extended to the
slope coefficients, but this line of research has not yet been pursued in
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theoretical or applied research.

Finally, we develop all models in a Bayesian framework as the
traditional sampling - theory estimators are more problematic to
compute and they may behave erratically in finite samples. With dy-
namic panel data models with random coefficients, in particular, the
use of sampling-theory estimators is prohibited as the widely used
Arellano-Bond Generalized Method of Moments (GMM) estimator as-
sumes fixed slope coefficients. As stated by Assaf and Tsionas (2019, p.
273), “this is an important handicap which limits the scope of sampling-
theory estimators in dynamic panel data models. Bayesian procedures
are more straightforward to apply in dynamic models as lagged de-
pendent variables do not create new problems in terms of estimation for
the Bayesian approach”. Besides, use of the Arellano-Bond GMM esti-
mator is problematic when the Arellano-Bond instruments are weak —in
which case the sampling behavior of GMM can be erratic and unreli-
able. The standard criticism against the Bayesian approach in this
context (namely that random parameters are orthogonal to the re-
gressors) can be alleviated through the use of the Mundlak device. Use
of this device in the context of dynamic panel data is, however, novel
and constitutes a major contribution of the present paper.

2. Dynamic panel models in tourism

Seetaram and Petit (2012) provided an interesting and compre-
hensive review on the application of panel data analysis in tourism
research. Generally, and in line with their findings, most panel data
applications in tourism continue to focus on either the determinants of
tourism demand or the relationship between tourism and economic
growth (Yang, 2012; Zhang & Gao, 2016; Du, Lew, & Ng, 2016; Bilen,
Yilanci, & Eryiizlii, 2017; Paramati, Alam, & Chen, 2017; Saha, Su, &
Campbell, 2017; Wu & Wu, 2019). In addition, over the last decade, the
tourism literature (and similarly the hotel literature) has experienced
an increased number of applications of dynamic panel models (Garin-
Mun, 2006; Sequeira and Macas Nunes, 2008; Rey et al., 2011;
Seetanah, 2011; Yang, 2012; Assaf, Josiassen, Mattila, & Cvelbar, 2015;
Kim, Jun, & Tang, 2019; Woo, Assaf, Josiassen, & Kock, 2019). Apart
from the many advantages in estimation that dynamic models introduce
over static models (e.g. fixed effect, random effect, Ordinary Least
Squares (OLS)), they also provide a more realistic representation of
most modeling contexts in tourism and hospitality; such as the context
of demand modeling, where it is more logical to assume that current
visitation depends on past visitation (Seetaram & Petit, 2012, pp.
127-144). Ignoring such dynamic effects may result in an over-
estimation of the model parameters (Garin-Mun, 2006, p.288).

Three trends can be observed form the existing dynamic panel
studies in tourism and hospitality research:

1. First, the use of the Arellano-Bond (AB) technique seems to be the
most common approach for estimating dynamic panel models and
for deriving both short-run and long-run relationships (Maloney and
Montes Rojas, 2005; Naudé & Saayman, 2005; Fayissa, Nsiah, &
Tadasse, 2008; Brida and Risso, 2009; Seetanah, 2011; Santana-
Gallego, Ledesma-Rodriguez, & Pérez-Rodriguez, 2011; Massidda &
Etzo, 2012; Li, Goh, Zhang Qiu, & Meng, 2015; Li, Song, & Li, 2017).
The same conclusion was also reported by Seetaram and Petit (2012,
pp. 127-144).

. Second, given the heavy use of the (AB) technique, most estimations
are based on the GMM procedure. Our review of the literature
clearly indicates that the Bayesian approach has been absent from
most existing studies in tourism and hospitality. As mentioned
above and later in the paper, the Bayesian approach introduces clear
advantages in the estimation of panel models such as the ability to
perform better when T is small and the higher flexibility it offers for
complex model specifications such as the ones we are proposing in
this study. The Bayesian approach does not require instrumental
variables, as is the case with GMM. When the Arellano-Bond
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instruments are weak, the sampling behavior of GMM can result in
inconsistent estimates.

. Third, none of the existing studies has fully explored heterogeneity.
While accounting for dynamic effects is a critical issue, we argue
that there is a far more important issue, namely whether one can
reasonably assume that only intercepts are unit-specific, but other-
wise the slope coefficients are the same. For many reasons, the latter
is, apparently, true as not all units, at a given point in time, have
exactly the same “technology” of transforming explanatory variables
to dependent variables (whatever specific meaning this acquires in
any given economic narrative). Panel data specifications with slope
coefficients that are allowed to differ across cross-sectional units
and/or over time have received practically no attention in the lit-
erature. The increased use of Arellano and Bover and Arellano and
Bond specifications means that researchers become increasingly
aware that processes in tourism economics are inherently dynamic
(due to, for example, adjustment costs or other inertia). This opens
up novel questions. First, are the dynamic responses the same across
cross-sectional units? Second, are responses of the dependent vari-
able to explanatory variables time-invariant and/or homogenous
across cross-sectional units?

3. Why bayesian?

In addition to the many advantages of the Bayesian approach that
we discussed above, we provide additional background as to why the
Bayesian estimator is highly effective in the context of panel data.
Suppose we have a standard panel data autoregressive model of the
form:

Y = i + PV + Uins i=1, .,nt=1, ..,T,

®

where a;s are fixed effects. If T tends to infinity, the least-squares-
dummy-variables (LSDV) estimator of «; and yare consistent. However,
for finite T, and lyl < 1, as N tends to infinity it is known that the LSDV
estimator of y is inconsistent due to the incidental parameters problems
(Neyman & Scott, 1948). While the maximum likelihood estimators are
inconsistent, there have been proposed consistent instrumental vari-
ables/methods of moments estimators (e.g. Ahn & Schmidt, 1995;
Anderson & Hsiao, 1981, 1982; Arellano & Bond, 1991; Arellano &
Bover, 1995; Blundell & Bond, 1998).

If we take first differences, we can eliminate the fixed effects, since:

(2

If Iyl <1, the process has been going on for a long time, and
u;; ~ iid N (0, o2) the likelihood function is:

Ay, = pAy,q +Auy, i =1, .on, t=1, .., T.

i=1

n
Q@m)="T2| Q|2 exp{—l Z Au’i.QlAui},
2 (3a)

where Au; = [4y,, Aup,....Au;r]’, and the covariance matrix Q = 020,
where Q* is a matrix whose element (1,1) is % and all other elements
are —1, 0, or 2 (see Hsiao, Pesaran, & Tahmiscioglu, 2002, formula
3.2). The corresponding Maximum likelihood estimation (MLE) is
consistent as N tends to infinity, regardless of whether T is fixed or
tends to infinity. The introduction of weakly exogenous variables (such
as a vectorx;;) follows a similar treatment. Moreover, if the process has
started from a finite period in the past not too far back from the Oth
period, and E(4y,) = b (where b is an unknown constant that can be
estimated), the analysis is somewhat different but similar in its main
spirit; see Hsiao et al. (2002) for more details.

Under the assumption of conditioning on the initial conditions,
Hsiao, Pesaran, and Tahmiscioglu (1999) show that the Bayes estimator
performs very well when T is small, which is quite important in prac-
tice. This result is certainly surprising. As Hsiao et al. (2002) mention,
this could be due to the fact that the Bayes estimator is a weighted
average of estimators for individual units and thus it is effectively
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“trimming” estimates that are unreliable in small samples. The result is
certainly interesting and paves the way for consideration of more
general panel data models and richer structures or sources of hetero-
geneity. Of course, consistent estimators may perform badly in finite
samples, so consistency cannot be the sole criterion for selecting an
estimator.

The reader may be surprised to see that a normal likelihood/pos-
terior is used to provide statistical inferences without allowing for
“endogeneity inherently present” in DPM. However, the endogeneity
arises when the LSDV estimator is used as sample averages of the errors
and the lagged dependent variables are, naturally, correlated.
Moreover, for “fixed T, large N ” consistent estimators such as “first-
differenced GMM” may be problematic as it is not always the desired
kind of asymptotic in empirical research. As a matter of fact, a common
assumption in dynamic panel models is that errors uy, any potential
regressors, and the lagged dependent variable are uncorrelated.
Problems arise when the individual effects need to be wiped out by
using certain transformations.

That is, problems arise when we must face the incidental parameters
problem (i.e. number of individual effects increases with n). Moral-
Benito (2013) has shown that we have, essentially, a normal likelihood
whose maximization is asymptotically “equivalent to the class of first-
differenced GMM estimators discussed in Arellano and Bond (1991)
augmented with moments resulting from lack of autocorrelation in the
errors”. Additionally, provided that we make a mean-stationarity as-
sumption, i.e. first differences of the dependent variable and regressors
are orthogonal to the errors, we can exploit the resulting moment
conditions as discussed in Arellano and Bover (1995). Additionally,
Hsiao et al. (1999) showed that the Bayesian estimator and the familiar
mean-group estimator are equivalent and consistent-asymptotically-
normal estimators of the average coefficient as long asn — o0, T — o
and /n /T — 0. This implies that both n and T should be large but n
should grow faster than T so this result is more relevant in applications
with large n but small T which is, admittedly, a common situation.

4. Advanced dynamic models

Given the power and flexibility of the Bayesian approach, we de-
scribe seven dynamic models, all developed in a Bayesian framework.
All models are based on the idea of further exhausting heterogeneity by
introducing dynamic slope coefficient models. One common feature of
these models is that they all allow for heterogeneity in slope para-
meters.”

The base model (M1) is a model where slope coefficients are
common for all cross-sectional units, and only intercepts are allowed to
be different to capture heterogeneity. This can be expressed as follows:

Ve=ai+ Xy Bty tuni=1,.,nt=1,..T

(1xk) (kx1) (3b)

where «; ~ iidN (&, 02) represents the random effects, u; ~ N (0, o2) is
the error term.

The initial conditions can be expressed as:y,, ~ N (J, Gyzm). This is
probably the simplest model that accounts for heterogeneity in the
context of panel data, when p = 0. Despite this fact, it is really the
dynamic panel data model popularized by the Arellano and Bover and
Arellano and Bond estimators. In a Bayesian context, with fixed data,
estimation and inference in the model is straightforward, but this is not
so in a frequentist context because of the incidental parameters pro-
blem.

Before proceeding, we need to mention that M1 is already an ad-
vanced econometric tool unless for p = 0, in which case we have a static
panel data model which has been the main workhorse of empirical
analysis for many decades. Assuming that p = 0, so that we do not have

2 This is in line with Hsiao et al. (1999). In all subsequent discussion, initial
conditions are treated as unknown parameters with a N (0, 10?) prior.
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dynamics, a lot of attention has been paid to whether we have fixed or
random effects (which can be tested using Hausman's test). This moti-
vates us to describe entirely new classes of general models for panel
data, which we analyze below.

4.1. Model 2 (M2): dynamic random coefficients I

Building on M1, the second model (M2) can be expressed as:
Ye=ai+ Xy B + PV YU i=1, .,n, =1, ..T,
(Axk) (kx1) (4a)
where o; ~ iidN (&, o2) represents the random effects, u; ~ N (0, o2) is
the error term.

The initial conditions can be expressed as:y,, ~ N (7, Uyzio ), and we
make the following assumptions for the coefficients:

n=18u ol
% =Y%_1+Vv,vu~N(Q,2),
Y~ N(%, 12),

A ~ Exp(do), Ao = 1. (30)
The model is still a dynamic panel data model with intercepts that
vary across individuals and slope coefficients that are allowed to be
time-varying, albeit they are the same across individual units. Notably,
the coefficient of lagged dependent variables are time-varying as well,
which is a novelty relative to the standard Arellano and Bover and
Arellano and Bond specifications. This model extends M1 in two di-
mensions: First, it allows for dynamics by dependence of the lagged
dependent variable, and second, it allows the slope coefficients to be
time-varying. Intercepts are still allowed to be different to capture
heterogeneity. The time variation of the coefficients is assumed to be
“smooth” in the sense that it is given by a random walk formulation.

4.2. Model 3 (M3): dynamic random coefficients II

This model generalizes M2 in the sense that slopes and the coeffi-
cient of the lagged dependent variable are allowed to depend on both
time and cross-sectional units. M3 allows for both time variation across
cross-sectional units and dynamics in the slope coefficients. Again, as in
M2, notably, the coefficient of lagged dependent variables is time-
varying as well, which is a novelty relative to the standard Arellano and
Bover and Arellano and Bond specifications. The main novelty of M3 is
that it is a quite general specification for dynamic panel data in which
slope coefficients are time-varying (in an autoregressive way) while
they are simultaneously allowed to be different across cross-sectional
units. This is clearly far more general than any specification proposed
so far in the literature for handling dynamic panel data.

M3 can be expressed as follows:

=i+ Xy B+ +Uni=1.,nt=1.,T
(k) (kx1)

or

Vo= Xu By +puYyq tii=1.,nt=1,.T,

(AxK) (k'x1) (4b)
where k is the dimensionality of the regressors in X, and k = k + 1.
Here we assume that x;; contains a column of ones so that the intercept
is unit-specific as well as time-varying. We rewrite the model in com-
pact form as follows:

2y Y U, i=1, ..,nt=1, ..,T,

(1xk) (kx1)

Yie =
5)
where k = k' + 1, and u;; ~ N (0, ¢?2) is the error term. The initial con-

ditions can be expressed as:y;, ~ N (Jy, 0;0), and we make the following
assumptions for the coefficients:
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Ye =B Pl
Y = Y1+ Vi Vi ~ N (0, 2),
Yo ™~ N(}_/i(y Aiz)a

A7~ Bxp(Ao), Ao = 1. ®)

4.3. Model 4 (M4): mundlak device

The fourth model takes a different approach by using the Mundlak
device. The Mundlak device is used to model individual effects differ-
ently. These effects are related to average values of the regressors (so
the device allows for fixed effects), but at the same time an error term is
utilized so that random effects are introduced as well. Clearly, the
Mundlak device is more general than either fixed or random effects and
allows considerable flexibility in modeling. Since the individual effects
are related to average number of regressors, the problem reduces to
estimating a fixed number of parameters which do not increase with n
or T so the incidental parameters problem does not arise. To illustrate,
the Mundlak device generalizes fixed and random effects (for the in-
tercept) as follows:

o=+ Xy B oy, tu,i=1, .,n,t T

(1xk) (kx1)

1, ..
)

where «; = x';6 + &, § ~ iidN (0, 052) represents the random effects,
X =T Z[T=1x,«[ , and u; ~N(0,02) is the error term, and
Yio» ~N (g, opi)are the initial conditions.

When o = 0 we have the fixed effects formulation. When o; > 0, we
have the random effects formulation augmented by an assumption of
dependence of intercepts on average values of the regressors.

We can write the model as follows:

Ve=2uy+ W +8),i=1, .,nt=1, ..,T, (8)

where z;; = [%;, X'y, ¥;,_,]". The econometric implication is that the error
terms are correlated for the same unit due to the presence of §. If we

stack the observations, we can write the model as
Y. =Ziy + v, 9

where cov(v) = o2l + O'EZJT, and J; denotes a matrix whose elements
are all equal to one.

4.4. Model 5 (M5): mundlak device with random coefficients I

In this specification, we augment the standard Mundlak device (M4)
with the assumption of random coefficients for the slopes:

Vo=t Xy B +pY g tuni=1,.,nt=1,.,T,
(1xk) (kx1) (10)
where a; =x";8 + §, £ ~ iidN (0, ag) are the random effects,

X =T Z[T:I Xit, and u; ~ N (0, o?2) is the random error term. The initial
conditions can be expressed as:y,, ~ N (3, Uyz,-o ), and we make the fol-
lowing assumptions for the coefficients:

v=8ypol ~N{, Q),i=1, ..,n. a1

4.5. Model 6 (M6): mundlak device with random coefficients II

Model M6 is more general than M5 and closer to the spirit of M4, in
the sense that variation of slopes depends on average values of the
regressors as well. This model allows for heterogeneity by modeling the
slopes as functions of the average values of the regressors, instead of
focusing attention exclusively on individual effects. Indeed, it can be
argued that heterogeneity does not exhaust itself in modeling constant

terms, as slopes can be different for each individual.
=i+ Xy B +poY g tuni=1,.,nt=1,..,T

(Axk) (kx1) 12)
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where a; =x;0 + §, £ ~ iidN (0, 052) are the random effects,
X =T ZL X, and uy; ~ N (0, o?) is the random error term. The ad-
vantage of this approach is that the incidental parameters problem is
solved by reducing it to estimation of k parameters § in x'. Therefore,
we extend the Mundlak device to modeling the slopes; not only the firm
effects.

The initial conditions can be expressed as:y, ~ N (i, oy,), and we

make the following assumptions for the coefficients:

x'i 0 0 51 &
i = [, ﬁliy Pi]’, =10 0 : + |
wax1) 0 0 xi||&u 2
=y xx) 6 €
(e X x1) (Mix1)  (Mix1) 13)

where X; = (Iyy X x;)and.  ~ N(0, Q),i=1, ...n
4.6. Model 7 (M7): a general panel data model

Model M7 is general in the sense that we allow for cross-sectional
and time variation of slopes:

Ye=au+ Xy B +pYy g tUni=1 .,nt=1,.,T

(Ixk) (kx1)

a4

where x; = T-! Zlexm and u; ~ N (0, g2) is the random error term.
The initial conditions can be expressed as:y,, ~ N (J,, o"yzi ,) and we make
the following assumptions for the coefficients:

yit = [aih ﬁ’j[’ pit]ly

(kx1)

“e=V+ W+ A+
(kx1)  (kx1)

v ~ N (0, 2,

w; ~ idNy (i, ),

A =2Ai1 + e, e ~ iidN; (0, ),

Yo ~ N (7, Ai2), Ao ~ 1idNi (0, ¢,
A7~ Exp(do), A9 = 1,

@7~ Exp(@y), 9, = 1.

@15)

Hence all coefficients have an additive decomposition
(% = u; + A + v;) into cross-sectional effects (u;, time effects (1;) and a
random component (v;)). The time effects evolve according to a
random walk and cross-sectional effects are independent across units
but dependent for the different coefficients (through matrix Q,).

4.7. Model 8 (M8): a mundlak device when the random effects depend on
other functions of the data

Finally, the last model generalizes the Mundlak device in that in-
tercepts (cross-sectional effects) do not depend exclusively on average
values of the regressors but other functions of the data as well (standard
deviations, higher moments, etc.):

=i+ Xy B +py, tu,i=1,.,nt=1..,T

(1xk) (kx1) (1e6)

wherea; = x';8; + vech(s;)'S, + §, & ~ iidN (0, ag),xi =T! ZtT=1 X
s;=T71 Zthl (i — %) — %), and uy ~ N (0, o) is the random error
term. The initial conditions can be expressed as: y, ~ N (Jg, 0y5) »
where vech(.) is the vector stacking the different elements of the in-
dicated matrix.

The model in (16) introduces more generality as the simple
Mundlak device may be responsible for potential misspecification. This
misspecification could be important in obtaining consistent parameter
estimates as n gets larger. For example, although the Mundlak device
reduces the problem of incidental parameters by estimating a fixed
number of parameters, the parameters relate to average values of the
regressors. This is, however, only an assumption; if it is not true, mis-
specification will compromise the ability of the model to deliver
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Table 3
Out of sample forecasting.

Table 1

Descriptive statistic.
Variable Obs. Mean Std. Dev.
Sales 341 3251.621 5445.581
Advertising 341 101.722 181.564
Firm Size 341 2,971 0.588
Financial Leverage 341 0.670 0.600

consistent estimators. From the point of view of modeling hetero-
geneity, the assumption that individual effects relate to average values
of the regressors may be wrong when the distribution of regressors
matters for individual effects. This can be taken into account, while not
compromising the reduction of the problem of incidental parameters to
estimating a fixed number of parameters, by including higher moments
of the distribution of regressors into the Mundlak device. For example,
standard deviations or variances of the regressors can be used to ‘ex-
plain’ the individual effects, in the interest of making the approach
more flexible.

5. Empirical application

We test the above models using an application on the impact of
advertising spending on firm sales. Most previous studies in the lit-
erature (Assaf et al., 2015; Bruce, Foutz, & Kolsarici, 2012; Heyse &
Wei, 1985; Sonnier, McAlister, & Rutz, 2011) have assumed a dynamic
impact of advertising on sales (or other related performance metrics)
due to the carry-over effects or wear out of advertising campaigns (Bass,
Bruce, Majumdar, & Murthi, 2007). In our estimation, we focused on a
sample of US restaurants, covering a sample of 22 publicly traded
restaurants from 2001 to 2016. The data is unbalanced and we have a
total of 341 observations. In addition to advertising, we also control for
the impact of firm size (log of total assets) and financial leverage (long-
term book debt over total assets), two variables that are commonly used
in similar contexts (Lee, Seo, & Sharma, 2013; Luo, Homburg, &
Wieseke, 2010). All data we collected from the COMPUSTAT database.
We provide the descriptive statistics of all these variables in Table 1.

RMSFE (%), 1 year RMSFE (%), 2 years

ahead ahead
M1 34.41 40.01
M2 22.32 32.60
M3 17.51 22.35
M4 12.35 16.71
M5 7.31 9.44
M6 2.45 3.08
M7 1.93 2.79
M8 1.81 2.44
Geweke-Amisano pool 1.32 2.05
Averaging based on in-sample 2.33 3.71

BF

of predictive densities {p(;ly,,....y,_1, -#)} M, we consider the fol-
i=1
lowing form of combined predictive densities:

M M
Z wip O, vy, Y1, -#), Where Z wi=1 w;>0,i=1, ..,M.

i=1 i=1

a7

The optimal weight vector w* is chosen to maximise the log pooled
predictive score function; that is,

where the predictive density is evaluated at the realized value jy,.
Conditional on the data up to time t — 1, i.e., y,, ..,),_,, We obtain a
large number of posterior draws for the parameters (by applying the
MCMC algorithm for a large number of iterations), which are then used
to evaluate the predictive likelihood p(y; = y’ly,....);_;, -#). Based on
the entire history of predictive likelihood values one can derive the
weights in expression (18). For optimization, we have used a standard
nonlinear solver (Nash, 1984). Given the data Y we define the marginal
likelihood or evidence of a model as:

M(Y) = [ Li(8; Y)p,(6)d6,

(o) M

argmax Z log ZWiP(VzWP---’Yt_p M)

wi,i=1,...M =11 i=1

18

19

where L;(6;; Y), p;(6;) denote the likelihood and prior, respectively.

6. Results
Using (19) we can also construct the posterior model probabilities
As mentioned, we estimated all models in a Bayesian framework.’ 5\51\(/[5)) T ;Nhlcgl thg“;el\l/}P f (1n—s.'211rrllgle) bm;rgma:il . likelihoods
Appendix A provides more technical about the Bayesian procedure of i), =14 ... M, the ormodelt can be delined as:
the various models. For the purpose of comparison, we estimate all PMP. = M;(Y)
eight models proposed in this paper. We use the model pooling pro- P Zf"i ) Mj(Y), o (20
posed by Geweke and Amisano (2011), which is based on the as- =
Table 2
Model comparison.
M1 M2 M3 M4 M5 M6 M7 M8
Bayes factor 1.000 7.44 11.28 15.62 11.03 27.36 81.16 103.21
Geweke-Amisano 0.000 0.000 0.000 0.000 0.000 0.038 0.092 0.870
PMP 0.0039 0.0288 0.0437 0.0605 0.0427 0.106 0.3145 0.3999

Notes: Geweke-Amisano provides the Geweke-Amisano posterior model probabilities in a posterior predictive pool using a hold-out sample of five observations for

each firm. PMP denotes posterior model probabilities using the Bayes factor.

sumption that none of the competing models corresponds to the true

data generating process, and “instead considers a linear prediction pool

based on the predictive likelihood (log score function)” from a set of

competing models. To illustrate, given a set of models {.# }.JV{ and a set
i=

3 All codes used in the estimation can be provided by the authors upon re-
quest.
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Table 2 reports the model comparison's results. Based on the Bayes
factor, the model pooling of Geweke and Amisono, and PMP, M8 out-
performs all other models in our application. For example, in compar-
ison to the base model M1, M8 has a Bayes factor of 103.21, indicating
a considerably better performance. According to model pooling, M8 has
the highest PMP, clearly indicating that it performs best, followed then
by other models with PMP > 0.

Further evidence on the performance of the various models is
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M5 M6 M7 M8

Table 4
Posterior mean and standard deviation.
M1 M2 M3 M4
advertising 0.209* (0.017) 0.313* (0.032) 0.144* (0.017)
size 1.762* (0.07) 1.351* (0.025) 0.856* (0.022)
leverage —0.019 (0.032) —0.044 (0.030) —0.035* (0.012)

lagged sales 0.315* (0.021) 0.521* (0.018) 0.552* (0.013)

0.120* (0.009)
0.921* (0.019)
—0.022 (0.030)
0.613* (0.022)

0.233* (0.024)
1.150* (0.022)
—0.015* (0.007)
0.587* (0.019)

0.187* (0.017)
0.933* (0.019)
—0.022* (0.006)
0.616* (0.022)

0.302* (0.015)
1.230* (0.026)
—0.017* (0.002)
0.510* (0.035)

0.221* (0.015)
1.190* (0.035)
—0.031 (0.017)
0.481* (0.029)

Note: Numbers in parentheses are the posterior standard deviations. * indicates significance at the 5% level or higher.
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Fig. 1. Marginal posterior densities of advertising across all models.

reported in Table 3 where we provide the out of sample forecasting
performance of each model. The magnitude of forecasting mistakes is
measured with root mean squared forecast error (RMSFE).* Forecasting
is performed for one and two years ahead. Specifically, for each hotel,
we leave out the last one or two years, estimate the models and predict
the left-out observations using the posterior mean point forecast and
compute the RMSFEs as usual. We also tested forecasting in two other
ways. First, we use the Geweke-Amisano out-of-sample posterior model
probabilities to predict observations that we left out. Second, we use the
in-sample posterior model probabilities to perform Bayesian model
averaging and, in turn, predict out of sample. Clearly, the models are
performing well across both approaches, but the first approach clearly
performs much better as the RMSFEs are much smaller. In addition, it is
clear that M8 has the lowest RMSFE in our present application,

“In addition to RMSFE we also tried the mean absolute percentage error
(MAPE) but we obtained the same conclusion.
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indicating best forecasting performance.

Finally, we report (in Table 4) the posterior mean and standard
deviations of all variables in our application. These include advertising,
size, leverage, as well as the lag of sales. Figs. 1-4 also report the
posterior densities of these variables. It is clear that all models indicate
a significant and positive impact of advertising on sales, as is expected
from the literature (e.g. Darrat et al.,, 2016; McAlister, Srinivasan,
Jindal, & Cannella, 2016). The lag of sales also seems significant across
most models, providing more support for the use of dynamic formula-
tion. As is clear from the densities, there are notable deviations from
normality, so asymptotic theory may not be valid in our context. In
Fig. 5, we report the same densities using Bayesian model averaging
(BMA), where we average over all models used in the paper. This way,
we account for any uncertainty (when assessing parameters and pre-
dictions) that can result from the model selection process. In general,
our results are consistent with those reported in Figs. 1-4. For instance,
we can see from Fig. 5 the effect of advertising on sales is positive and
close to 0.23 ranging from 0.17 to 0.3.
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Fig. 2. Marginal posterior densities of firm size across all models.

7. Conclusions

In this paper, we described several innovative dynamic panel data
models that allow for variations in slope coefficients both across time
and cross-sectional units. To our knowledge, most of these models have
not been explored in previous studies. Most static or dynamic panel
data models are based on the assumption that slope coefficients are
common across units and heterogeneity is modeled using fixed or
random effects for the intercept. However, heterogeneity is not fully
captured through assuming that intercepts are unit-specific or by using
fixed or random effect estimators. In the proposed models, we allow the
slope coefficients to vary both across time and cross-sectional units, and
in a dynamic fashion (i.e. dynamic slope coefficients). Importantly, we
also introduced for the first time, flexible models based on the Mundlak
device; which is more general than either fixed or random effects and
does not suffer from the incidental parameters problem.

We applied these models in an interesting application showing the
effects of advertising on sales. We compared their performance using
model pooling and posterior model probabilities. We also assessed their
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out of sample forecasting performance. For the present application it
was clear that M8 outperformed all other models, which is not sur-
prising given that M8 is based on the more flexible Mundlak device and
is more general in the sense that it is likely to better address any mis-
specification issues created by the simple Mundlak device. Regardless,
these models are open for testing, and future studies are encouraged to
at least consider some of them for comparison purposes. Simply, relying
on the Arellano-Bond (AB) model, as is common in the tourism litera-
ture, may run the risk of misspecification in some applications, as the
AB model (in contrast to the models proposed in this study) is based on
fixed slope coefficients. Hence, it does not fully exhaust heterogeneity.

Finally, we encourage more use of the Bayesian approach for the
estimation of dynamic panel data models in tourism research. As
mentioned, the Bayesian approach has particular advantages in the
context of dynamic models, as the use of lagged dependent variables
does not introduce any additional problems with Bayesian estimation.
In addition, the use of the GMM estimator is problematic when the
Arellano-Bond instruments are weak. In such a case, the sampling be-
havior of GMM can lead to unreliable estimates.
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Appendix A. Bayesian Technical details

This appendix provides more technical details about Bayesian estimation. We focus on M3 which is a generalization of M1 and M2, M6, which is a
generalization of M4 and M5, and M7 which can be simply extended to M8.

Model M3

Considering M3 again as defined in (5):

Vo= i Y tupni=1 .,nt=1,.,T,
(Axk) (kx1) (A.1)

The augmented posterior of the model can be written as follows:

P(Uu, 2, {)’,-t}, {lx}b’, X) 53 U;(nT+1) eXP{ z, 1 Z[ 1 (yl[ z lt}/I }

T /5
|Z|(HT+k+1)/ZeXp{_% Zin:1 Zt:l (}/it - yi,t—l)z l(yit - yi,t—l)}.

(T, WS exp{ =2 S, G = 7Y A2 0t = o)}

exp{-1o Y 47} (A.2)
ctive form:
p(oy, X) « gt IZ|-k+Dr2 (A.3)

Drawing from the conditional posteriors of g,, 2 is straightforward since:

Zica Zt 1(ylt Zun)’ -y, X ~ 22 (nT),
o2 (A4

and

p(Cl) « ||~ (nT+k+2)/2 exp{—%trZ‘lA},

(A.5)
where A= Y7 S0 0 = %ee DG — %) + Sy 4G — %) (o — %o)'- This conditional posterior is in the inverted Wishart family.
The conditional posterior of each A;is:
pil) x A7 exp(—al™), i=1, ..,n, (A.6)
where a = (3, — 7))’ (}fy — %) + Ao. This is an inverted gamma distribution provided k > 2.
The difficult part of the MCMC sampler is to draw efficiently {,}. These parameters can be updated as follows:
Yelhier Ywr W X~ Ne@p Vi), i =1, con, t=1, ., T— 1, A7)

where 7, = (242" + 202270 [zuyy + GZ Gy + Yl 1 =1, T — Land V; = o (a2’ + 20221 with the proper adjustments for ¥, and y;.
Model M6 (Mundlak device)

We use (12) to write the model in the form:

Ve =2ub+uy, i=1.,nt=1,.T,

B=Xb+¢ei=1,.,n, (A.8)
If we stack observations, we have y, = Z; + u;,and using the Mundlak device we obtain:

¥ =@ZX)s + i+ Zig),i=1, ...,n (A.9)
This is a model with fixed coefficients and the covariance of the error is

El(ui + Zig)(wi + Zig)'l = oily + ZQZ', i =1, ..,n, (A.10)

Which shows that it is different for different units. The likelihood function of the model can be written as follows:

L6y, X) = Hlf’: 62Ty + Z,QZ'7V2. exp{—— Z — (ZX)8) @2l + Z:QZ') v — (zjgé)} (A.11)
where the parameter vector 6 = [§', g, vech (Q2)']'. If we parametrize Q in terms of the non-zero elements of its Cholesky factorization, 2 = C'Cwhere
C is lower triangular, it is not difficult to use general-purpose optimization algorithms to find the maximum likelihood estimator.

Given a non-informative prior, p(8) « g, '1QI-*+1/2 where with some abuse of notation in the main text, k is the dimensionality of z;, the
posterior can be analyzed efficiently using the Girolami and Calderhead (2012) algorithm. The algorithm uses first and second derivative information
about the log-posterior: p(6ly, X) « L(6; y, X)p(6). Given a MCMC draw for 6, a draw for ¥ can be obtained as:

S For simplicity we omit terms involving the initial conditions.
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Wy X~NG V), i=1, .0, (A.12)

where. 7 = (Z'.Z; + 2O Y N2y + 27K, Vi=02(ZZi+ 20 ) i=1, .0

Notice that, in this instance, we “concentrate out” the unit-specific parameters as we are using the likelihood L(6; y, X). Of course, the algorithm
can be used in several special cases including Model M3. For Model M8 we use exactly the same algorithm as the only difference relative to Model M6
concerns the definition of X;.

Model M7

Model M7 has the following structure:

Ve =Zu¥y+Upi=1,..,nt=1,..,T, (A.13)
With
Ve =V H M+ A+ (A.14)

Conditionally on the time effects, we have:

Ve — ik =20V + 2u Wy + 1) + uy (A.15)
Which we can stack as follows:

VW—Zid=Zy+¢gi=1, .,n (A.16)

where ¢ = Z;(v; + u;) + u; whose covariance matrix is

Si=Ee) = ZE + Q)2 + o)1 (A17)
Therefore, we can express the posterior as

p@ly, X) « [ [TI, 1= I‘”Z]exp{—% T 0 = ZiA = Ziy)ET N, — Zid - Zz}’)}'

1072 exp{—] T, A = 1) 07 (& = A4 }dAp(6) (A18)

where p(6)is a non-informative prior. Conditional on A4, we can draw y as follows:

Yy, X ~ N(Z'E7 22571y = Z2), (Z57'2)7Y), (A.19)

where Z = diag[Z,,...Z,], Y = [Y",...Y',] and Z = diag[Z,...Z,). The different elements of X, Q, and o7 are updated using a Girolami and
Calderhead (2012) technique (see Appendix B). The different elements of ; are updated using the Wishart conditional posterior:

1y, X) o | [F(T+k+D)/2 eXp{—%trAl.Q,fl},

(A.20)
where 4; = ¥ (4 — 4D — A1)
To draw from the posterior conditional of A, we write the model as follows:
Vo —Za@ + u) =2k + @ievie + wir)
We can stack the observations as
VEZW-ZG+u)=ZA+CZvi+u), t=1, ..,T, (A.21)

where cov(Zv + u,) = Z:(I, ® 2)Z'; 4+ oI, = V;. Since A;14,_, & ~ N (4;_;, ;) the conditional posterior of time effects is given as follows:
A1, gty -y, X ~ N(/i,, Vz) (A.22)

where.
=12V Z + 2077 20V + Q7 ey + Ae)) t =1, T = 1, and. V; = [Z, V712, + 2071
For Ag, A7 we need the obvious adjustments in the conditional posterior distributions.

Appendix B. The Girolami-Calderhead Update
Suppose L(6) = log p(61X) is used to denote (for simplicity) the log posterior of 6. Let us define
3
G(6) = est. cov% log p(X16) (A.23)

Which is the sample analogue of
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aZ
G,(6) = —Emaml‘)gp(me) (A.24)
The Langevin diffusion is the following stochastic differential equation:
1-
dg(t) = E%L{@(t)}dt + dB(t) (A.25)
where
VL{B(0)} = —G 1O} %L{B(1)} (A.26)

is the gradient of the Riemann manifold associated with the log posterior. The various elements of Brownian motion are defined as follows:

Kg
G 1{B(1)}dB;(t) = IG{B()}I71/? Z aa—e[G*I{G(t)}ijIG{G(t)}I”Z]dt
j=1

(A.27)
+ [VG{8(O)}dB(D)];
The discretization of the stochastic differential equation provides a proposal as follows:
5 — 00+ Sqg (oo oy _ g2 ke 1090 966 1 g0 & Ko (g0 1(g0) 96 (") —1(go) £o
6 =6+ 5 {GH(E)WL(EM)}; — € ijl G769 %, G769 ) +3 ijl {G1(6")}tr{G71(6") %, + {61 (6§,
= u(8° ) + {eyG (69§ (A.28)
where (3¢ is the current draw. The proposal density is
q(616°) = N, (6, £G7'(6”) (A.29)
and convergence to the posterior distribution is ensured by using the Metropolis-Hastings probability:
5 A

minl1, 2€ ,Y)q<e~|e)}

p(6°1-,Y)q(Bla°) (A.30)

Finally, we select ¢ during the burn-in phase so that, approximately, 25% of all candidates are, eventually, accepted.
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